Lecture 6

Divide and conquer (cont.), master theorem, integer multiplication, maxima set

CS 161 Design and Analysis of Algorithms Ioannis Panageas

Application: Maxima Sets

- We can visualize the various trade-offs for optimizing twodimensional data, such as points representing hotels according to their pool size and restaurant quality, by plotting each as a twodimensional point, (x, y), where x is the pool size and y is the restaurant quality score.
- We say that such a point is a maximum point in a set if there is no other point, $\left(x^{\prime}, y^{\prime}\right)$, in that set such that $x \leq x^{\prime}$ and $y \leq y^{\prime}$.
* The maximum points are the best potential choices based on these two dimensions and finding all of them is the maxima set problem.

We can efficiently find all the maxima points by divide-and-conquer. Here the set is $\{\mathrm{A}, \mathrm{H}, \mathrm{I}, \mathrm{G}, \mathrm{D}\}$.

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
- Divide: divide the input data S in two or more disjoint subsets S_{1}, S_{2}, \ldots
- Conquer: solve the subproblems recursively

- Combine: combine the solutions for S_{1}, S_{2}, \ldots, into a solution for \boldsymbol{S}
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations
(C) 2015 Goodrich and Tamassia

Merge-Sort Review

- Merge-sort on an input sequence S with n elements consists of three steps:
- Divide: partition S into two sequences S_{1} and S_{2} of about $\boldsymbol{n} / 2$ elements each
- Conquer: recursively sort \boldsymbol{S}_{1} and \boldsymbol{S}_{2}
- Combine: merge S_{1} and S_{2} into a unique sorted sequence

```
Algorithm mergeSort(S)
    Input sequence }\boldsymbol{S}\mathrm{ with }\boldsymbol{n
                                    elements
    Output sequence S sorted
    according to C
    if S.size()>1
        (\boldsymbol{S},},\mp@subsup{\boldsymbol{S}}{2}{})\leftarrow\operatorname{partition(S,}\boldsymbol{n}/2
    mergeSort( }\mp@subsup{S}{1}{
    mergeSort (S}\mp@subsup{S}{2}{}
    S\leftarrowmerge}(\mp@subsup{S}{1}{},\mp@subsup{S}{2}{}
```


Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with $n / 2$ elements and implemented by means of a doubly linked list, takes at most $b \boldsymbol{n}$ steps, for some constant b.
- Likewise, the basis case $(\boldsymbol{n}<2)$ will take at \boldsymbol{b} most steps.
- Therefore, if we let $T(n)$ denote the running time of merge-sort:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n & \text { if } n \geq 2
\end{array}\right.
$$

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
- That is, a solution that has $T(n)$ only on the left-hand side.

Iterative Substitution

- In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: $\quad T(n)=2 T(n / 2)+b n$

$$
\begin{aligned}
& \left.=2\left(2 T\left(n / 2^{2}\right)\right)+b(n / 2)\right)+b n \\
& =2^{2} T\left(n / 2^{2}\right)+2 b n \\
& =2^{3} T\left(n / 2^{3}\right)+3 b n \\
& =2^{4} T\left(n / 2^{4}\right)+4 b n \\
& =\ldots \\
& =2^{i} T\left(n / 2^{i}\right)+i b n
\end{aligned}
$$

- Note that base, $T(n)=b$, case occurs when $2^{i}=\mathrm{n}$. That is, $\mathrm{i}=\log \mathrm{n}$.
- So,

$$
T(n)=b n+b n \log n
$$

- Thus, $T(n)$ is $O(n \log n)$.
(C) 2015 Goodrich and Tamassia

The Recursion Tree

- Draw the recursion tree for the recurrence relation and look for a pattern:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n & \text { if } n \geq 2
\end{array}\right.
$$

time
bn
bn
bn

Total time $=\boldsymbol{b n}+\boldsymbol{b} \boldsymbol{n} \log \boldsymbol{n}$ (last level plus all previous levels)

Guess-and-Test Method

- In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n \log n & \text { if } n \geq 2
\end{array}\right.
$$

- Guess: $\mathrm{T}(\mathrm{n})<\mathrm{cn} \log \mathrm{n}$.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+b n \log n \\
& =2(c(n / 2) \log (n / 2))+b n \log n \\
& =c n(\log n-\log 2)+b n \log n \\
& =c n \log n-c n+b n \log n
\end{aligned}
$$

- Wrong: we cannot make this last line be less than cn $\log n$

Guess-and-Test Method, (cont.)

- Recall the recurrence equation:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n \log n & \text { if } n \geq 2
\end{array}\right.
$$

- Guess \#2: $\mathrm{T}(\mathrm{n})<\mathrm{cn} \log ^{2} \mathrm{n}$.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+b n \log n \\
& =2\left(c(n / 2) \log ^{2}(n / 2)\right)+b n \log n \\
& =c n(\log n-\log 2)^{2}+b n \log n \\
& =c n \log ^{2} n-2 c n \log n+c n+b n \log n \\
& \leq c n \log ^{2} n
\end{aligned}
$$

- So, $T(n)$ is $O\left(n \log ^{2} n\right)$.
- In general, to use this method, you need to have a good guess and you need to be good at induction proofs.

Master Method

- Many divide-and-conquer recurrence equations have the form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

Master Method, Example 1

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=4 T(n / 2)+n
$$

Solution: $\log _{b} a=2$, so case 1 says $T(n)$ is $O\left(n^{2}\right)$.

Master Method, Example 2

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=2 T(n / 2)+n \log n
$$

Solution: $\log _{\mathrm{b}} \mathrm{a}=1$, so case 2 says $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n} \log ^{2} \mathrm{n}\right)$.

Master Method, Example 3

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=T(n / 3)+n \log n
$$

Solution: $\log _{\mathrm{b}} \mathrm{a}=0$, so case 3 says $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.

Master Method, Example 4

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=8 T(n / 2)+n^{2}
$$

Solution: $\log _{b} a=3$, so case 1 says $T(n)$ is $O\left(n^{3}\right)$.

Master Method, Example 5

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=9 T(n / 3)+n^{3}
$$

Solution: $\log _{b} a=2$, so case 3 says $T(n)$ is $O\left(n^{3}\right)$.

Master Method, Example 6

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=T(n / 2)+1 \quad \text { (binary search })
$$

Solution: $\log _{b} a=0$, so case 2 says $T(n)$ is $O(\log n)$.

Master Method, Example 7

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$,
provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
Example:

$$
T(n)=2 T(n / 2)+\log n \quad \text { (heap construction) }
$$

Solution: $\log _{\mathrm{b}} \mathrm{a}=1$, so case 1 says $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}(\mathrm{n})$.

Sketch of Proof of the Master Theorem

- Using iterative substitution, let us see if we can find a pattern:

$$
\begin{aligned}
T(n) & =a T(n / b)+f(n) \\
& \left.=a\left(a T\left(n / b^{2}\right)\right)+f(n / b)\right)+b n \\
& =a^{2} T\left(n / b^{2}\right)+a f(n / b)+f(n) \\
& =a^{3} T\left(n / b^{3}\right)+a^{2} f\left(n / b^{2}\right)+a f(n / b)+f(n) \\
& =\ldots \\
& =a^{\log _{b} n} T(1)+\sum_{i=0}^{\left(\log _{b} n\right)-1} a^{i} f\left(n / b^{i}\right) \\
& =n^{\log _{b} a} T(1)+\sum_{i=0}^{\left(\log _{b} n\right)-1} a^{i} f\left(n / b^{i}\right)
\end{aligned}
$$

- We then distinguish the three cases as
- The first term is dominant
- Each part of the summation is equally dominant
- The summation is a geometric series

Integer Multiplication

* Algorithm: Multiply two n-bit integers I and J.
- Divide step: Split I and J into high-order and low-order bits

$$
\begin{aligned}
& I=I_{h} 2^{n / 2}+I_{l} \\
& J=J_{h} 2^{n / 2}+J_{l}
\end{aligned}
$$

- We can then define I^{*} J by multiplying the parts and adding:

$$
\begin{aligned}
I^{*} J & =\left(I_{h} 2^{n / 2}+I_{l}\right) *\left(J_{h} 2^{n / 2}+J_{l}\right) \\
& =I_{h} J_{h} 2^{n}+I_{h} J_{l} 2^{n / 2}+I_{l} J_{h} 2^{n / 2}+I_{l} J_{l}
\end{aligned}
$$

- So, $T(n)=4 T(n / 2)+n$, which implies $T(n)$ is $O\left(n^{2}\right)$.
- But that is no better than the algorithm we learned in grade school.

An Improved Integer Multiplication Algorithm

- Algorithm: Multiply two n-bit integers I and J.
- Divide step: Split I and J into high-order and low-order bits

$$
\begin{aligned}
& I=I_{h} 2^{n / 2}+I_{l} \\
& J=J_{h} 2^{n / 2}+J_{l}
\end{aligned}
$$

- Observe that there is a different way to multiply parts:

$$
\begin{aligned}
I * J & =I_{h} J_{h} 2^{n}+\left[\left(I_{h}-I_{l}\right)\left(J_{l}-J_{h}\right)+I_{h} J_{h}+I_{l} J_{l}\right] 2^{n / 2}+I_{l} J_{l} \\
& =I_{h} J_{h} 2^{n}+\left[\left(I_{h} J_{l}-I_{l} J_{l}-I_{h} J_{h}+I_{l} J_{h}\right)+I_{h} J_{h}+I_{l} J_{l}\right] 2^{n / 2}+I_{l} J_{l} \\
& =I_{h} J_{h} 2^{n}+\left(I_{h} J_{l}+I_{l} J_{h}\right) 2^{n / 2}+I_{l} J_{l} \\
& \quad \text { So, } \mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}, \text { which implies } \mathrm{T}(\mathrm{n}) \text { is } \mathrm{O}\left(\mathrm{n}^{\log _{2} 3}\right) \text {, by } \\
& \text { the Master Theorem. } \\
& \text { - Thus, } \mathrm{T}(\mathrm{n}) \text { is } \mathrm{O}\left(\mathrm{n}^{1.585}\right) .
\end{aligned}
$$

Maxima Set Problem Statement

- We have a database of hotels.
- Each hotel has:
- a pool size (x-coordinate)
- quality of restaurant (y-coordinate)
- Assume all coordinates distinct
- Want hotel with largest pool and best restaurant Might not be a unique hotel.
- One might have largest pool, other best restaurant.
- Return the set that aren't wrong.
- Any where no other hotel has both larger pool and better restuarant.
- Maxima Set Example

Minima Set Brute Force

Sort hotels along any dimension
for $i=1 \rightarrow n-1$ do

$$
\text { for } j=i+1 \rightarrow n \text { do }
$$

if A_{i} has larger pool and better food than A_{j}
Remove A_{j}
return All hotels that we did not remove

- This is $O\left(n^{2}\right)$.

Beginning Divide and Conquer

MaximaSet (S)
if $n \leq 1$ then
return S
$p \leftarrow$ median point in S by x-coordinate
$L \leftarrow$ points less than p
$G \leftarrow$ points greater than or equal to p
$M_{1} \leftarrow \operatorname{MaximaSet}(L)$
$M_{2} \leftarrow \operatorname{MaximaSet}(G)$

- return $M_{1} \cup M_{2}$?

Example revisited

- From $M_{1} \cup M_{2}$, which point(s) belong for sure?

Finding a correct recombine

MaximaSet (S)
if $n \leq 1$ then
return S
$p \leftarrow$ median point in S by x-coordinate
$L \leftarrow$ points less than p
$G \leftarrow$ points greater than or equal to p
$M_{1} \leftarrow \operatorname{MaximaSet}(L)$
$M_{2} \leftarrow \operatorname{MaximaSet}(G)$

- return $M_{1} \cup M_{2}$?
- How do I recombine correctly?

Improved Recombine

$M_{1} \leftarrow \operatorname{MaximaSet}(L)$
$M_{2} \leftarrow \operatorname{MaximaSet}(G)$
for each $a \in M_{1}$ do
for each $b \in M_{2}$ do
if a better than b then remove b from M_{2}

- How can we improve the "recombine" step?
- What is the resulting running time?

Example for the Combine Step

Analysis

- In either case, the rest of the non-recursive steps can be performed in $\mathrm{O}(\mathrm{n})$ time, so this implies that, ignoring floor and ceiling functions (as allowed by the analysis of Exercise $\mathrm{C}-11.5$), the running time for the divide-and-conquer maxima-set algorithm can be specified as follows (where b is a constant):

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n & \text { if } n \geq 2
\end{array}\right.
$$

- Thus, according to the Master Theorem, this algorithm runs in $O(n \log n)$ time.

